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An extraneous shock impinging on a blunt body in a hypersonic flow has

been observed to greatly increase both the heat transfer rate and pressure

near the impingement point. In fact, Hains and Keyes1 have measured peak

heating rates up to 17 times the ordinary stagnation point rate and pressure

peaks up to 8 times the freestream pitot pressure as a result of shock im-

pingement. Flow fields of this type will occur on the Space Shuttle and

other maneuverable re-entry vehicles.

The intense heating and high pressures occur over a small region where a

disturbance, originating at the intersection of the impinging shock and bow

shock, strikes the body. -The disturbance may be a free shear layer, a

supersonic jet, or a shock depending on the strength and location of the

impinging shock and the shape of the body. Edney 2 has described six diff-

erent types of shock interference patterns which can occur. The shock

interference pattern which produces the maximum heating rates and pressures

is Type IV, which is shown in Fig. 1. In this type of interference pattern,

the disturbance is a supersonic jet which is embedded in the subsonic

portion of the flow field.

Because of the very complicated nature of shock impingement flow fields,

previous attempts 2-5 at predicting the maximum heating rates and pressures

have been limited to semiempirical approaches. In the present study, this
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empiricism has been eliminated since the entire shock impingement flow field

has been numerically computed. This was accomplished by using a "time-depen-

dent", finite-difference method
6 which solves the complete set of Navier-

Stokes equations for a compressible flow. The major reason for using the

"time-dependent" method is that the resulting unsteady Navier-Stokes equations

are a mixed set of hyperbolic-parabolic equations for both subsonic and super-

sonic flows. As a result, a very complicated flow field, such as the one

shown in Fig. 1 where both subsonic and supersonic regions are present, can

be calculated as an initial-value problem. An additional advantage is that

since Navier-Stokes equations are solved in a conservative manner, shocks are

automatically allowed to form without previous knowledge of their location or

even existence.

In the present two-dimensional analysis, the computational domain extends

from the bow shock to the body and includes both the upper and lower sonic

lines. For ease of computation, two coordinate transformations have been

employed. The first transformation maps the physical plane into a rectangular

computational plane bounded on the left by the bow shock and bounded on the

right by the body. The second transformation stretches the computational

grid in the direction normal to the body in order to permit a better resolution

of the boundary layer.

MacCormack's finite-difference algorithm7 is used to solve the Navier-

Stokes equations at each interior grid point. In order to determine the

flow variables at the grid points along the leftmost boundary, the bow shock

is treated as a moving discontinuity across which the Rankine-Hugoniot

equations are applied. The location of the bow shock at each time step is

determined using a predictor-corrector method . All other shocks which exist

between the bow shock and the body as well as any shear layers, jets, and the

boundary layer are automatically "captured" in the finite-difference solution.
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Initially, the blunt body flow without the impinging shock is computed.

The impinging shock is then introduced into the flow field by specifying its

location and strength. Thus, the freestream conditions behind the impinging shock

are known. The computation is then restarted and is continued until the final

"steady-state" solution is reached.

The present method has been used to compute the two-dimensional flow fields

resulting when different shocks are allowed to impinge on a circular cylinder.

The freestream conditions chosen for these calculations were

M = 4.6 p = 14.93 newtons/m2

ReD  = 10,000 T = 167 0K

Pr = .72 D = .3048 m

y = 1.4 T = 5560 K
wall

A mesh consisting of 31 grid points in the normal direction and 51 grid points

in the transverse direction was used in all computations. The Mach number

contours for the blunt body flow without the impinging shock are shown in

Fig. 2. The boundary layer is clearly evident in this figure. Computations

were then made of two cases in which shocks of different strengths were

allowed to impinge on the undisturbed flow field at a point near the stagnation

streamline. These impinging shocks made angles of 16.10 and 20.90, respectively,

with the freestream direction.

The Mach number contours for the 16.10 shock impingement calculation are

shown in Fig. 3. In this case, a shear layer emanates from the impingement

point and makes a tangential approach to the body surface. This corresponds

to a Type III interference pattern although no shock from the body surface is

observed. This is probably due to. the tangential approach of the shear layer.

The Mach number contours for the 20.90 shock impingement calculation are

shown in Fig. 4. In this case a shear layer emanates from the impingement

point and is intercepted by a shock wave which starts at the upper kink in



4

the bow shock. This is a Type IV interference pattern. The internal shock

wave is smeared as would be expected in a "shock-capturing" calculation. The

impinging shock has caused the stagnation point to be moved 
a considerable

distance from its original location (see Fig. 4). A comparison of the pressures

and heat transfer rates on the body surface before and after impingement 
are

shown in Figs. 5 and 6. The impinging shock causes a peak pressure which is

2.4 times greater than the undisturbed stagnation point pressure and a peak

heating rate which is 2.5 times greater than the undisturbed stagnation point

rate.

The flow conditions and shock angles chosen for these sample calculations

correspond with the tests of Edney
2 , which were three-dimensional flows resulting

from a planar shock impinging on a body of revolution. Although the present

calculations are two-dimensional, qualitative comparisons can still be made with

the Edney experiments, especially near the bow shock where the flow is locally

two-dimensional. The correctness of the present calculations is inferred by

these comparisons.
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Fig. 2. Mach number contours for no shock impingement.
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Fig. 3. Mach number contours for 16.10 shock impingement.



9

M=1.0

0.5 K = 51

STAGNATION
POINT

20.'9

Mw 4.6

0 .S

K = I

Fig. 4. Mach number contours for 20.9o shock impingement.
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